518 lines
21 KiB
C
518 lines
21 KiB
C
|
// SPDX-FileCopyrightText: 2023 Ämin Baumeler <amin@indyfac.ch> and Eleftherios-Ermis Tselentis <eleftheriosermis.tselentis@oeaw.ac.at>
|
||
|
//
|
||
|
// SPDX-License-Identifier: GPL-3.0-or-later
|
||
|
|
||
|
#include <stdio.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <string.h>
|
||
|
#include <time.h>
|
||
|
|
||
|
/***
|
||
|
* Print the graph's adjacency matrix
|
||
|
***/
|
||
|
void dumpgraph(int n, const int *children, const int *childrenlen) {
|
||
|
int adj[n*n];
|
||
|
for(int i=0; i<n*n; i++) adj[i] = 0;
|
||
|
for(int a=0; a<n; a++) {
|
||
|
for(int bidx=0; bidx<childrenlen[a]; bidx++) {
|
||
|
const int b = children[a*n+bidx];
|
||
|
adj[a*n+b] = 1;
|
||
|
}
|
||
|
}
|
||
|
// Print
|
||
|
printf("{");
|
||
|
for(int a=0; a<n; a++) {
|
||
|
if(a) printf(",");
|
||
|
printf("{");
|
||
|
printf("%d", adj[a*n+0]);
|
||
|
for(int b=1; b<n; b++) printf(",%d", adj[a*n+b]);
|
||
|
printf("}");
|
||
|
}
|
||
|
printf("}\n");
|
||
|
}
|
||
|
|
||
|
/***
|
||
|
* Block size of our datastructure.
|
||
|
***/
|
||
|
int blocksize(int n) {
|
||
|
int res=(n+1)*n;
|
||
|
for(int i=0; i<n; i++)
|
||
|
res *= n-i;
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
/***
|
||
|
* Recrusive bi-directional graph traversal, used to check connectivity.
|
||
|
***/
|
||
|
void traverse(int vertex, int *visited, int n, const int *parents, const int *parentslen, const int *children, const int *childrenlen) {
|
||
|
visited[vertex] = 1;
|
||
|
for(int i=0; i<parentslen[vertex]; i++) {
|
||
|
int u = parents[n*vertex + i];
|
||
|
if(visited[u] == 0)
|
||
|
traverse(u, visited, n, parents, parentslen, children, childrenlen);
|
||
|
}
|
||
|
for(int i=0; i<childrenlen[vertex]; i++) {
|
||
|
int u = children[n*vertex + i];
|
||
|
if(visited[u] == 0)
|
||
|
traverse(u, visited, n, parents, parentslen, children, childrenlen);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/***
|
||
|
* Return 1 if the graph is connected, and 0 otherwise.
|
||
|
***/
|
||
|
int isconnected(int n, const int *parents, const int *parentslen, const int *children, const int *childrenlen) {
|
||
|
// Early check: Is there a node with 0 total degree?
|
||
|
for(int i=0; i<n; i++) if(parentslen[i]+childrenlen[i]==0) return 0;
|
||
|
// Check connectivity
|
||
|
int visited[n];
|
||
|
for(int i=0; i<n; i++) visited[i] = 0;
|
||
|
// Start traversal
|
||
|
traverse(0, visited, n, parents, parentslen, children, childrenlen);
|
||
|
for(int i=0; i<n; i++) if(!visited[i]) return 0;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/***
|
||
|
* Interpret graph number `graph' as a simple digraph, and populate the arrays `parents', `parentslen', `children', `childrenlen'
|
||
|
* The number `graph' is understood as the adjacency matrix with the diagonal removed (no self loops).
|
||
|
***/
|
||
|
void graphnrtolists(int n, unsigned long long int graph, int *parents, int *parentslen, int *children, int *childrenlen) {
|
||
|
for(int i=0; i<n; i++) {
|
||
|
parentslen[i] = 0;
|
||
|
childrenlen[i] = 0;
|
||
|
}
|
||
|
int row = 0;
|
||
|
int col = 1; // We cannot start at (0,0); it does not exist
|
||
|
unsigned long long g = graph;
|
||
|
for(int i=0; i<n*(n-1); i++) {
|
||
|
int val = g%2;
|
||
|
g = g/2;
|
||
|
if(val) {
|
||
|
children[row*n+childrenlen[row]] = col;
|
||
|
childrenlen[row]++;
|
||
|
parents[col*n+parentslen[col]] = row;
|
||
|
parentslen[col]++;
|
||
|
}
|
||
|
col++;
|
||
|
if(col==row)
|
||
|
col++;
|
||
|
if(col==n) {
|
||
|
col = 0;
|
||
|
row++;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/***
|
||
|
* Find the tail in `path' of length `pathlen' that includes a cycle, and save the canonical representation.
|
||
|
* The canonical representation is the listing of the nodes of the cycle starting from the smallest one.
|
||
|
***/
|
||
|
void canonical_cycle(int n, int *cycle, int *cyclelen, const int *path, int pathlen) {
|
||
|
int startidx;
|
||
|
int pathhascycle = 0;
|
||
|
const int last = path[pathlen-1]; // This is the last node
|
||
|
for(int k=0; k<pathlen-1; k++) {
|
||
|
if(path[k]==last) { // We have found the first occurance of node `last' on the path
|
||
|
// The cycle the following part of path: path[startidx], path[startidx+1], ..., path[pathlen-2], and therefore has length pathlen-startidx-1
|
||
|
startidx = k;
|
||
|
(*cyclelen) = pathlen-startidx-1;
|
||
|
pathhascycle = 1;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if(!pathhascycle) { // Sanity check. This should NEVER happen!
|
||
|
fprintf(stderr, "ERROR: You provided a path to `canonical_cycle' that does NOT contain a cycle as its tail! I'm returning now.\n");
|
||
|
return;
|
||
|
}
|
||
|
// Generate canonical representation
|
||
|
// First, find smallest node on cycle
|
||
|
int smallestidx = -1;
|
||
|
int smallest = n;
|
||
|
for(int k=startidx; k<pathlen-1; k++) {
|
||
|
if(smallest > path[k]) {
|
||
|
smallest = path[k];
|
||
|
smallestidx = k;
|
||
|
}
|
||
|
}
|
||
|
// Now, copy cycle to `cycle' starting from the smallest
|
||
|
int j=0; // This is the index on where to write on the array `cycle'
|
||
|
for(int i=smallestidx;; i++) {
|
||
|
if(j==*cyclelen) break; // Stop filling in, if we reached the end
|
||
|
if(i==pathlen-1) i = startidx; // If we reach the end of the path, jump to the start
|
||
|
cycle[j] = path[i]; // Write at position `j' the element from the cycle on the path at position `i`'
|
||
|
j++; // Increase index to write on `cycle'
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/***
|
||
|
* Return 1 if the cycle is not in `cycles', otherwise 0.
|
||
|
***/
|
||
|
int cycleisnew(int n, const int *c, int clen, const int *cycles, const int *cyclescnt) {
|
||
|
const int cnt = cyclescnt[clen];
|
||
|
const int bs = blocksize(n);
|
||
|
for(int i=0; i<cnt; i++) { // Iterate over all cycles of the same length
|
||
|
int j;
|
||
|
const int startidx = clen*bs + i*clen; // We start here
|
||
|
for(j=0; j<clen; j++) // Go position by position
|
||
|
if(cycles[startidx+j] != c[j])
|
||
|
break; // They differ at position j
|
||
|
if(j==clen) // We didn't break
|
||
|
return 0;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/***
|
||
|
* Save the given cycle `c' of length `clen' in `cycles'.
|
||
|
***/
|
||
|
void savecycle(int n, const int *c, int clen, int *cycles, int *cyclescnt) {
|
||
|
const int m = cyclescnt[clen]; // There are already `m' cycles of length `clen'
|
||
|
const int bs = blocksize(n);
|
||
|
const int startidx = clen*bs + m*clen; // We start writing here
|
||
|
for(int i=0; i<clen; i++) cycles[startidx+i] = c[i];
|
||
|
cyclescnt[clen]++; // Increase the counter that holds the number of cycles of length `clen'
|
||
|
}
|
||
|
|
||
|
|
||
|
/***
|
||
|
* Recursive depth-first-search to find cycles in the graph specified by `children' and `childrenlen'.
|
||
|
* The cycles are stored in `cycles' and `cyclescnt'.
|
||
|
* Parameter `useless': n-array where useless nodes are marked
|
||
|
* Parameter `path': Array of nodes that represent a path on the graph
|
||
|
* Parameter `pathlen': Lenght of `path'
|
||
|
* Parameter `visited': n-array to mark visited nodes
|
||
|
* Parameter `n': Number of nodes
|
||
|
* Parameter `found': Pointer to integer to count the number of cycles found
|
||
|
***/
|
||
|
void dfs(const int *useless, int *path, int pathlen, int *visited, int n, const int *children, const int *childrenlen, int *cycles, int *cyclescnt, unsigned int *found) {
|
||
|
int cycle[n]; // Temporary store for cycle
|
||
|
int cyclelen; // Length of temporarilly stored cycle
|
||
|
const int vertex = path[pathlen-1]; // We go on duing a dfs from node `vertex'
|
||
|
for(int i=0; i<childrenlen[vertex]; i++) {
|
||
|
const int u = children[n*vertex + i]; // Enter node `u'
|
||
|
if(useless[u]) continue; // This one is useless
|
||
|
if(visited[u] == 0) { // Not visited yet
|
||
|
visited[u] = 1; // Mark as visited
|
||
|
path[pathlen] = u; // Append to path, and re-enter recursion...
|
||
|
dfs(useless, path, pathlen+1, visited, n, children, childrenlen, cycles, cyclescnt, found);
|
||
|
visited[u] = 0; // Undo marking, we are going to take another route
|
||
|
} else {
|
||
|
// We have reached a node on the path, i.e., we have found a cycle!
|
||
|
// The cycle is somewhere along the path
|
||
|
// path[0], path[1], ... path[pathlen-1]
|
||
|
// More specifically, node `u' is somewhere there.
|
||
|
// To detect this, we first place `u' on the path.
|
||
|
// The method `canonical_cycle' will then use this information to find and return the canonical form of the cycle.
|
||
|
path[pathlen] = u;
|
||
|
canonical_cycle(n, cycle, &cyclelen, path, pathlen+1); // Find cycle and generate the canonical representation.
|
||
|
if(cycleisnew(n, cycle, cyclelen, cycles, cyclescnt)) { // Is it new? If yes, save
|
||
|
(*found)++; // Increase the number of found cycles by 1
|
||
|
savecycle(n, cycle, cyclelen, cycles, cyclescnt); // Save cycle
|
||
|
}
|
||
|
// else dont do anything..
|
||
|
}
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/***
|
||
|
* Find cycles in the `n'-nodes graph specified by the arrays `children' and `childrenlen', and return the number of cycles found.
|
||
|
* The cycles are stored in `cycles' and `cyclescnt'.
|
||
|
* This uses a recursive depth-first-search.
|
||
|
***/
|
||
|
int find_cycles(int *cycles, int *cyclescnt, int n, const int *children, const int *childrenlen) {
|
||
|
int visited[n];
|
||
|
int useless[n]; // Some nodes are useless, mark them as such
|
||
|
int path[n+1]; // We use n+1 here because we will "close" the path to form a cycle, i.e., one node will be repeated.
|
||
|
unsigned int found = 0; // Store total number of cycles found
|
||
|
// Initialize cyclescnt to zero
|
||
|
for(int i=0; i<n+1; i++)
|
||
|
cyclescnt[i] = 0;
|
||
|
// Mark nodes without children as useless
|
||
|
for(int i=0; i<n; i++) {
|
||
|
useless[i] = (childrenlen[i]==0) ? 1 : 0;
|
||
|
}
|
||
|
// Iterate over nodes
|
||
|
for(int vertex=0; vertex<n; vertex++) {
|
||
|
if(useless[vertex]) continue;
|
||
|
for(int i=0; i<n; i++) visited[i] = 0; // Mark all as univisited
|
||
|
path[0] = vertex; // We start at `vertex'
|
||
|
visited[vertex] = 1; // Mark `vertex' as visited. If we revisit a node, we found a cycle.
|
||
|
// Enter depth-first-search recursion
|
||
|
dfs(useless, path, 1, visited, n, children, childrenlen, cycles, cyclescnt, &found);
|
||
|
// We processed this. Every cycle that goes through `vertex' has been found.
|
||
|
useless[vertex] = 1;
|
||
|
}
|
||
|
return found;
|
||
|
}
|
||
|
|
||
|
/***
|
||
|
* gissoc tests wheter the graph provided is a SOC or not.
|
||
|
* Parameter `n': Number of nodes
|
||
|
* Parameter `parents': Pointer to list of parents per node
|
||
|
* Parameter `parentslen': Pointer to list of number of parents per node
|
||
|
* Parameter `children': Pointer to list of children per node
|
||
|
* Parameter `childrenlen': Pointer to list of number of children per node
|
||
|
* Parameter `cycles': Pointer to list of cycles in the graph
|
||
|
* Parameter `cyclescnt': Pointer to list of cycles count
|
||
|
*
|
||
|
* This function retruns 0 if the graph is NOT a SOC, and 1 otherwise.
|
||
|
*
|
||
|
* A SOC (Siblings-on-Cycles) is a simple digraph where every cycle has siblings, i.e., nodes with common parents.
|
||
|
***/
|
||
|
int gissoc(int n, const int *parents, const int *parentslen, const int *children, const int *childrenlen, int *cycles, int *cyclescnt) {
|
||
|
// We store the cycles in groups of the cycle lenghts (length of cycle is the number of edges, or equivalentelly, the number of distinct nodes)
|
||
|
// Since the graph is a simple digraph, the smallest cycles have length 2.
|
||
|
// cycles[0], cycles[1] is the first cycle of length 2
|
||
|
// cycles[2], cycles[3] is the second cycle of length 2
|
||
|
// etc.
|
||
|
// There are at most (n choose 2) cycles of length 2.
|
||
|
// There are at most (n choose n/2) cycles of length n/2. This is upper bounded by 2^n/sqrt(pi*n/2) < 2^n; this is the largest binomial coefficient.
|
||
|
// Since generally n will be small, we just use this bound for all groups.
|
||
|
// So, the cycles with length k are saved at and after cycles[k*(2^n)].
|
||
|
// Each block has size 2^n.
|
||
|
/* Early and saftey check for self loops. SOCs dont have self-loops, and we should never generate them. Anyhow, test */
|
||
|
for(int i=0; i<n; i++) {
|
||
|
int num = childrenlen[i];
|
||
|
for(int cidx=0; cidx<num; cidx++)
|
||
|
if(i == children[n*i+cidx]) {
|
||
|
fprintf(stderr, "ERROR: THIS GRAPH HAS A SELF LOOP (node %d)\n", i);
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
// Check SOC property
|
||
|
const int bs = blocksize(n);
|
||
|
// Iterate over cycle length; min length is 2, max length is n
|
||
|
// then iterate over cycle of length `len'
|
||
|
// then iterate over nodes of that cycle.
|
||
|
// In that iteration process, mark all parents.
|
||
|
// If a marked parent is marked again, we have found a common parent.
|
||
|
for(int len=2; len<n+1; len++) {
|
||
|
const int cnt = cyclescnt[len]; // Number of cycles of length `len'
|
||
|
for(int i=0; i<cnt; i++) { // Iterate over cycles
|
||
|
const int startidx = len*bs+len*i; // The cycle we look at (length=`len', index=`i') is saved starting from index `startidx'
|
||
|
// Initialize marks
|
||
|
int marked[n];
|
||
|
for(int k=0; k<n; k++) marked[k] = 0;
|
||
|
// Flag: Have we found a common parent?
|
||
|
int commonparentfound = 0;
|
||
|
// Iterate over cycle
|
||
|
for(int k=0; k<len; k++) {
|
||
|
const int vertex = cycles[startidx+k];
|
||
|
for(int pidx=0; pidx<parentslen[vertex]; pidx++) {
|
||
|
const int parent = parents[n*vertex+pidx];
|
||
|
if(marked[parent]) commonparentfound = 1; // The node `parent' is a common parent
|
||
|
else marked[parent] = 1; // Mark the parent node
|
||
|
if(commonparentfound) break; // We have found a common parent, break out of the for loop over `pidx'
|
||
|
}
|
||
|
if(commonparentfound) break; // We have found a common parent, break out of the for loop over `k'
|
||
|
}
|
||
|
if(!commonparentfound) // On cycle `i' we did NOT find a common parent, this is not a SOC
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
return 1; // If all test pass, we have found a SOC
|
||
|
}
|
||
|
|
||
|
/***
|
||
|
* Number of grandparents, and number of grandchildren
|
||
|
***/
|
||
|
int grandparentslen(int node, const int *parents, const int *parentslen) {
|
||
|
int tot = 0;
|
||
|
for(int i=0; i<parentslen[node]; i++)
|
||
|
tot += parentslen[i];
|
||
|
return tot;
|
||
|
}
|
||
|
int grandchildrenlen(int node, const int *children, const int *childrenlen) {
|
||
|
int tot = 0;
|
||
|
for(int i=0; i<childrenlen[node]; i++)
|
||
|
tot += childrenlen[i];
|
||
|
return tot;
|
||
|
}
|
||
|
/***
|
||
|
* Speed-up by ignoring all graphs that do not satisfy some ordering of out- and in-degrees.
|
||
|
* If the graph does not satisfy this `canonical' form, then another ismorphic to it (it's simply a permutation of the nodes)
|
||
|
* will be degree-ordered.
|
||
|
***/
|
||
|
int isdegreeordered(int n, const int *parents, const int *parentslen, const int *children, const int *childrenlen) {
|
||
|
// Decreasingling order by in-degree, then out-degree, then ...
|
||
|
for(int i=0; i<n-1; i++) {
|
||
|
if(parentslen[i] > parentslen[i+1]) {
|
||
|
return 0;
|
||
|
} else if(parentslen[i] == parentslen[i+1]) {
|
||
|
if(childrenlen[i] > childrenlen[i+1]) {
|
||
|
return 0;
|
||
|
} else if(childrenlen[i] == childrenlen[i+1]) {
|
||
|
if(grandparentslen(i,parents,parentslen) > grandparentslen(i+1,parents,parentslen)) {
|
||
|
return 0;
|
||
|
} else if(grandparentslen(i,parents,parentslen) == grandparentslen(i+1,parents,parentslen)) {
|
||
|
if(grandchildrenlen(i,children,childrenlen) > grandchildrenlen(i+1,children,childrenlen)) {
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/* Random nubers */
|
||
|
#if RAND_MAX/256 >= 0xFFFFFFFFFFFFFF
|
||
|
#define LOOP_COUNT 1
|
||
|
#elif RAND_MAX/256 >= 0xFFFFFF
|
||
|
#define LOOP_COUNT 2
|
||
|
#elif RAND_MAX/256 >= 0x3FFFF
|
||
|
#define LOOP_COUNT 3
|
||
|
#elif RAND_MAX/256 >= 0x1FF
|
||
|
#define LOOP_COUNT 4
|
||
|
#else
|
||
|
#define LOOP_COUNT 5
|
||
|
#endif
|
||
|
|
||
|
u_int64_t rand_uint64(unsigned long long max) {
|
||
|
u_int64_t r = 0;
|
||
|
for (int i=LOOP_COUNT; i > 0; i--) {
|
||
|
r = r*(RAND_MAX + (u_int64_t)1) + rand();
|
||
|
}
|
||
|
return r%max;
|
||
|
}
|
||
|
/* End of random numbers */
|
||
|
|
||
|
int main(int argc, char *argv[]) {
|
||
|
// Parse command-line arguments
|
||
|
int n = -1;
|
||
|
int NONDAGONLY = 0;
|
||
|
int NOSINK = 0;
|
||
|
int NOSOURCE = 0;
|
||
|
int RANDOM = 0;
|
||
|
int UNKOPTION = 0;
|
||
|
for(int i=1; i<argc; i++) {
|
||
|
if(strcmp(argv[i], "-n") == 0 && i+1 < argc) {
|
||
|
n = atoi(argv[i+1]);
|
||
|
i++;
|
||
|
} else if(strcmp(argv[i], "-r") == 0 && i+1 < argc) {
|
||
|
RANDOM = atoi(argv[i+1]);
|
||
|
i++;
|
||
|
} else if(strcmp(argv[i], "-c") == 0)
|
||
|
NONDAGONLY = 1;
|
||
|
else if(strcmp(argv[i], "--no-sink") == 0)
|
||
|
NOSINK = 1;
|
||
|
else if(strcmp(argv[i], "--no-source") == 0)
|
||
|
NOSOURCE = 1;
|
||
|
else {
|
||
|
UNKOPTION = 1;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if(UNKOPTION || n<=1) {
|
||
|
fprintf(stderr, "Usage: %s -n <order> [-r <num> ] [FILTER ...]\n", argv[0]);
|
||
|
fprintf(stderr, " -n <order> Generate SOCs with `order' connected nodes\n");
|
||
|
fprintf(stderr, " -r <num> Pick directed graphs at random, and exit after having found `num' SOCs\n");
|
||
|
fprintf(stderr, "\n");
|
||
|
fprintf(stderr, "[FILTER] Consider only simple directed graphs ...\n");
|
||
|
fprintf(stderr, " -c ... that are cyclic (i.e., not DAGs)\n");
|
||
|
fprintf(stderr, " --no-sink ... without sink nodes (this logically implies -c)\n");
|
||
|
fprintf(stderr, " --no-source ... without source nodes (also this logically implies -c)\n");
|
||
|
fprintf(stderr, "\n");
|
||
|
fprintf(stderr, "This program prints the found SOCs as adjacency matrices to stdout.\n");
|
||
|
fprintf(stderr, "To exclude (some) of the isomorphic SOCs, it uses a degree-order filter.\n");
|
||
|
return -1;
|
||
|
}
|
||
|
// EO Parse command-line arguments
|
||
|
// Setup datastructures
|
||
|
int parents[n*n]; // Each node i can have at most n-1 parents. These are listed at parents[n*i+k] for 0<=k<n
|
||
|
int parentslen[n]; // Number of parents of node i is stored in parentslen[i]
|
||
|
int children[n*n]; // Each node i can have at most n-1 children. These are listed at parents[n*i+k] for 0<=k<n
|
||
|
int childrenlen[n]; // Number of children of node i is stored in childrenlen[i]
|
||
|
const int bs = blocksize(n);
|
||
|
int *cycles = (int*)malloc(sizeof(int)*(n+2)*bs);
|
||
|
if(!cycles) {
|
||
|
fprintf(stderr, "Failed to allocate memory to store cycles (tried to allocate %lu bytes)\n", sizeof(int)*(n+2)*bs);
|
||
|
return -1;
|
||
|
}
|
||
|
int cyclescnt[n+1]; // cyclescnt[k] stores the number of cycles with length k
|
||
|
// EO Setup datastructures
|
||
|
// Initiate graph enumeration
|
||
|
const int m = n*(n-1);
|
||
|
if(m>64) {
|
||
|
fprintf(stderr, "Too many graphs to enumarate with an unsiged long long integer (number of node pairs = %d)\n", m);
|
||
|
return -1;
|
||
|
}
|
||
|
const unsigned long long max = 1L << m; // Largest `graphnumber'
|
||
|
const int padlen = (int)((float)m/3.322)+1;
|
||
|
int len = 0;
|
||
|
time_t t0 = time(NULL);
|
||
|
time_t t = time(NULL);
|
||
|
srand((unsigned) time(&t));
|
||
|
// EO Initiate graph enumeration
|
||
|
fprintf(stderr, "Generating SOCs with %d nodes\n", n);
|
||
|
if(RANDOM) fprintf(stderr, " Picking graphs at random\n");
|
||
|
if(NONDAGONLY) fprintf(stderr, " Filter: Omitting DAGs\n");
|
||
|
if(NOSINK) fprintf(stderr, " Filter: Omitting graphs with sink nodes\n");
|
||
|
if(NOSOURCE) fprintf(stderr, " Filter: Omitting graphs with source nodes\n");
|
||
|
unsigned long long graphnumber = 0; // We will always omit the graph with `graphnumber' 0; it is unintersting anyway
|
||
|
unsigned long long graphschecked = 0;
|
||
|
for(;graphnumber < max && (!RANDOM || len < RANDOM);) {
|
||
|
const time_t now = time(NULL);
|
||
|
// Break if we exhaustively check all graphs or if we found enough SOCs at random
|
||
|
//if(graphnumber >= max || (RANDOM && len >= RANDOM))
|
||
|
// break;
|
||
|
// Print status every second
|
||
|
if(now > t) {
|
||
|
t = now;
|
||
|
const int deltat = now - t0;
|
||
|
const float rate = (float)graphschecked/(float)deltat;
|
||
|
const float percentage = (RANDOM==0) ? 100*(float)graphnumber/(float)max : (float)len/(float)RANDOM;
|
||
|
fprintf(stderr, "\r%6.2f%% %*llu/%llu (found=%i at rate %*.2f graphs/s in %d seconds)",percentage,padlen,graphnumber,max,len,padlen+3,rate,deltat);
|
||
|
fflush(stderr);
|
||
|
}
|
||
|
// Convert graph index `grpahnumber' to the lists parents, children, parentslen, childrenlen
|
||
|
graphnrtolists(n, graphnumber, parents, parentslen, children, childrenlen);
|
||
|
// Increase checked counter and prepare for next iteration
|
||
|
graphschecked++;
|
||
|
if(RANDOM)
|
||
|
graphnumber = rand_uint64(max);
|
||
|
else
|
||
|
graphnumber++;
|
||
|
// EO Increase checked counter and prepare for next iteration
|
||
|
// If enabled, compare against degree options
|
||
|
if(NOSINK || NOSOURCE) {
|
||
|
// Get some degree properties
|
||
|
int minindegree = n;
|
||
|
int minoutdegree = n;
|
||
|
for(int node=0; node<n; node++) {
|
||
|
if(minindegree > parentslen[node])
|
||
|
minindegree = parentslen[node];
|
||
|
if(minoutdegree > childrenlen[node])
|
||
|
minoutdegree = childrenlen[node];
|
||
|
}
|
||
|
if(NOSINK && minoutdegree == 0) continue;
|
||
|
if(NOSOURCE && minindegree == 0) continue;
|
||
|
}
|
||
|
// Check whether this graph is canonical or not; continue if graph has not proper ordering of degress (there is an isomorphic graphs to this one that has been or will be checked)
|
||
|
if(!isdegreeordered(n, parents, parentslen, children, childrenlen)) continue;
|
||
|
// Ignore graphs that are not connected
|
||
|
if(!isconnected(n, parents, parentslen, children, childrenlen)) continue;
|
||
|
// Find cycles
|
||
|
const int num_cycles = find_cycles(cycles, cyclescnt, n, children, childrenlen);
|
||
|
// If enabled, ignore DAGs
|
||
|
if(NONDAGONLY && num_cycles > 0) continue;
|
||
|
// Test the Siblings-On-Cycles property
|
||
|
// A DAG is trivially a SOC
|
||
|
if(num_cycles > 0 && !gissoc(n, parents, parentslen, children, childrenlen, cycles, cyclescnt)) continue;
|
||
|
// We have found a SOC
|
||
|
len++;
|
||
|
dumpgraph(n, children, childrenlen);
|
||
|
}
|
||
|
const int deltat = time(NULL) - t0;
|
||
|
const float rate = (deltat == 0) ? graphschecked : (float)graphschecked/(float)deltat;
|
||
|
//fprintf(stderr, "\r100%% %llu/%llu ", max,max);
|
||
|
fprintf(stderr, "\r%6.2f%% %*llu/%llu (found=%i at rate %*.2f graphs/s in %d seconds)",100.00,padlen,graphnumber,max,len,padlen+3,rate,deltat);
|
||
|
fprintf(stderr, "\nFound %d SOCs at rate %.2f graphs/s in %d seconds\n", len,rate,deltat);
|
||
|
// Free manually allocated memory
|
||
|
free(cycles);
|
||
|
return 0;
|
||
|
}
|